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“The goal is to turn data into information, and information into insight” — Carly Fiorina

“It is a capital mistake to theorize before one has data.” — Sherlock Holmes

“Without data, you are just another person with an opinion” — W. Edwards Deming

“Data is a precious thing and will last longer than the systems themselves” — Sir Tim Berners-Lee
Purpose

A data management plan (DMP) is used to standardize data formatting, naming, organization and storing
so that data are accessible, understandable and reproducible. Data are any information collected or cre-
ated pertaining to a research project (e.g. data tables, analysis scripts, figures, manuscripts, and reference
libraries).

The definition of a research project depends on the individual project. Research projects are defined by
project leads in collaboration with a PI(s). Data management is project management. An easy guideline to
follow is to use the data to define what is a project and what is a subproject. For instance, if you are using
data that will be incorporated into many papers, then you would not want a project for each individual
paper because then you would have multiple copies of data and keeping good data management practices
across all copies would be difficult. In that case each paper would be a subproject under a larger project as
defined by the data.

Updating

The DMP is reviewed regularly because each time a new project is started, the DMP should be referenced.
It is updated based on input from iEcoLab team members who are actively managing and creating research
projects. All iEcoLab members are encouraged to read this DMP and discuss with their PI(s) if they prefer
to follow a different DMP for one project.

You can find the most up-to-date DMP and a quick guide by following the links in the top right corner of
this page.




Glossary

PI(s) — Principle Investigator(s); Matt Helmus and/or Jocelyn Behm
iEcoLab — Integrative Ecology Lab at Temple University

Research Project — Defined by the project leads in collaboration with their PI(s). Generally defined by
the data collected for each project.

Project Lead — The researcher who oversees the day-to-day tasks of the project.

Data Manager — The researcher who is in charge of curating the data for the project. This person is often
the same as the project lead but can also be any researcher working on the project




Section Overview

Pre — Project Planning

e Project Delineation: In this section, guidelines for how to delineate projects and subprojects are out-
lined

e Project Roles: In this section, guidelines for important project leadership roles are outlined

e Authorship: In this section, reasons for the creation of authorship guidelines and a resource to use for
the creation of these guidelines is provided

e Data Access and Ownership: In this section, guidelines for the accessibility and ownership of the data
produced by research projects are outlined

Filesystem

¢ File Organization: In this section, guidelines for how to organize your files in a directory are outlined.
File organization should also be strictly adhered to.

e File Naming: In this section, guidelines for how to name files are outlined. Naming conventions should
be strictly adhered to.

e File Documentation: In this section, guidelines for how to create readme and meta data files for
data and changelogs for versioning are outlined. In addition, information on what to include in these
documents are also detailed. At the very least a Meta Data file is required for all data tables.

e Version Control: In this section, guidelines for how to version control your data are described. Specific
guidelines for version control of analysis scripts will be described in a later section about Git Version
Control.

Data

e Data Collection: In this section, guidelines for how data from the field, laboratory, and mining digital
sources should be collected are described. These guidelines are not for the actual methods and tech-
niques of generating the data but rather how to properly record data and transfer it to a data file on
a computer.

e Data Formatting: In this section, guidelines for the formatting of data tables are described and includes
guidelines for column headers, text formatting, table structure, and file types.

e Data Backup: In this section, guidelines for how to back up your files are outlined.
e Data Storage and Sharing: In this section, guidelines for how to store and share your finalized data

files are outlined.

Reference Libraries: In this section, guidelines for how to create and manage a reference library for a
project Link to Section

Project Packaging

e R Packaging: In this section, guidelines for how to use an R Package to organize, document, and run
your analyses. This includes creating a package for your analyses and vignettes so that collaborators
and other researchers can easily understand your code and reproduce your analyses.



e Git R Script Version Control: In this section, guidelines for how to how to use Git to version control
your R scripts and analysis package.

Further Resources: Code, papers and resources for proper data management and hygiene Link to Section




Pre-Project Planning

Summary

Pre-project planning is important so that all researchers are on the same page, know what is needed of them,
and sets up proper data management practices. During pre-project planning the Data Management Plan
should be reviewed and, if necessary, altered to fit the specific project needs. Everyone associated with the
project needs to read and accept the Data Management Plan.

Additionally, delineation of projects and subprojects, what researchers will be responsible for, authorship
guidelines, and data access and ownership should all be planned out during pre-project planning. These
aspects of the project can be changed as needed during the project but only after consultation between the
PIs, project lead, and data manager.

Project Delineation

e Projects should be defined based on logical groupings and can include subprojects

For larger projects or collaborations, the individual research projects should be determined beforehand.
These research projects will be the backbone for your file organization, R packaging, and determining the
roles researchers will have for each research project.

The research projects can be delineated via the types of data collected, research questions, or another clear
grouping. In addition, research projects can have subprojects used for R packaging and task assignment.

For example, the Caribbean Macrosystems project is one large research project with multiple subprojects.
Two main subprojects (CaribMacro and CaribNet) were delineated based on the data used for each and
used for R packaging. CaribMacro only uses biodiversity and island characteristic data and CaribNet, while
also using data from CaribMacro, also uses detailed shipping network data not needed for CaribMacro. In
this case, planned manuscripts or research questions were not appropriate since multiple papers will use
these data, and because these projects share data, they are subprojects within the Caribbean Macrosystems
project.

Or for graduate student projects, each chapter of a thesis/dissertation can be a separate project or subpro-
jects.

Ultimately, project delineation is based on the preferences of the PIs and Project Lead and should be
dependent on the needs and/or characteristics of the research being conducted.

Project Roles

e Project roles need to be clearly defined for each project and subproject

e Project roles should include at least PI point of contact, project lead, and data manager

For each project, researcher roles need to be defined. Important roles for research projects include PI point
of contact, project lead, and data manager. In some cases, a researcher may hold multiple roles. An example
of this is graduate student projects where the graduate student will often be both the project lead and data
manager. The roles can be the same for the entire project or different between the subprojects.



PI point of contact: In the iEcoLab, this person is usually either Dr. Behm or Dr. Helmus but can be both.
The PI point of contact will provide the project lead with guidance in the creation of research questions, the
methods, and the writing of initial drafts of manuscripts and proposals.

Project Lead: the researcher who runs the day-to-day operations of the project (often a graduate student or
postdoc). The project lead is also in charge of managing the other researchers on the project by scheduling
their hours, giving them tasks, meeting with them regularly, and checking their work.

Data Manager: the researcher who is in charge of curating the data produced by the project. The data
manager also sets the access to the data (based on instruction from PIs) and is in charge of formatting and
properly backing up the data as defined by the Data Management Plan. It is the responsibility of both
the data manager and project lead to make sure all researchers are adhering to the Data Management Plan
that was agreed upon during pre-project planning. Often the data manager and project lead are the same
researcher for this reason.

Authorship

e Authorship guidelines should be made during pre-project planning

e Authorship guidelines need to be agreed upon by the PIs and Project Lead

Agreed upon authorship guidelines help to avoid issues later on when publishing the results of the project.
Setting these up before the start of the project gives the opportunity for all researchers to know what is
expected of them if they want to be included as an author on certain papers. Additionally, authorship
guidelines allow for practice of ethical authorship.

Typically, project leads are lead authors on papers while the PI point of contact is the last author. However,
this does not have to be the case. For more information on ethical authorship see:

Weltzin, J.F., Belote, R.T., Williams, L.T., Keller, J.K. and Engel, E.C. (2006) Authorship in ecology:
attribution, accountability, and responsibility. Front. in Ecol. and the Env. 4(8):435-441. LINK

Data Access and Ownership

e Data should be kept on a Shared Drive since PIs and University own the data

e Data access rules need to be agreed upon before data collection begins

Data should always be kept in a common location accessible to the data manager and PIs. In the iEcoLab
we use Google Shared Drives for this. During the pre-project planning, the PIs will create and share with
you the shared drive for your folder. If you are associated with Temple University, then these shared drives
must be shared to your university account. Access to these data will be controlled by the data manager and
rules for which researchers associated with project have access to what data will be determined by both the
PI point of contact and project lead.

Shared drives are used in the iEcoLab because the PIs and Temple University own the data. This means that
the PIs need to always have access to the data and ultimately control who inside and outside the project
has access to it which can be done easily as the owner of the shared drive through sharing permissions.
Researchers who wish to have access and use the data should have Google Drive installed on their computer
(instructions can be found HERE).

See the Data Storage and Sharing section for more information on final data storage and sharing.



https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/1540-9295%282006%294%5B435%3AAIEAAA%5D2.0.CO%3B2
https://support.google.com/drive/answer/7329379#zippy=

Filesystem

File Organization

e Each project should have a separate folder with at least four subfolders:

— data

— submission

— references

— R project folder(s)

Proper file organization makes it so that data files are easy to find and their purpose easy to ascertain.
Projects should be split into at least four separate folders:

o data

o submission

o references (optional — a Zotero reference library is required instead)

e code
As stated in the beginning of this DMP, a project should be defined by the data. If you are using data
for multiple smaller projects (or manuscripts) then you may have subfolders in the project folder for those
smaller projects. However, it is recommended that instead of having subfolders for those projects, you should

have separate R projects and, therefore, R project folders, for those smaller projects thereby making a new
R package for each subproject/manuscript.

Data Folder

The data folder will hold all of the various data tables, pictures, GIS data, etc. you are using for the project.
Root folder: Only the latest versions of your data should be in the root data folder.
Subfolders:

e raw: the original data files. These data files should never be edited!

e old: versions of your data.

You can add more subfolders to better organize your data if you wish.

Note: this data folder is different than the one that will be in your R project folder (see the R Packaging
section). The data folder in your R project folder (likely named something like ‘data_raw’) will only hold
the data you are using for your analyses. You can use a separate R script to import the latest versions (or
a specific version) of your data into this folder overwriting the data already in that folder (see the Useful
R Code section). To make this easier, there is a data_import() function being written for the iEcoDMP
package (iEcoDMP is currently under construction).
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Submission Folder

The submission folder will hold all all of your files you are using for manuscript creation.
Root folder: Files created and used for manuscript creation and presentation

Subfolders:

o figures: all figure files
o tables: all tables and appendices for the publication

e old: older versions of figures, tables and manuscript

References Folder

The references folder will hold any important journal articles you are using for your project.
Subfolders: created based on subject or manuscript

Note: in lieu of this references folder, Zotero reference manager library should be used. See the Reference
Libraries section for more information.

Code Folder

The code folder will hold all scripts and R project folder(s).
Subfolders:

e R Project folders (see R Packaging section)

o Any scripts that are not ran in R can be in a different subfolder named for the program/language used.
However, these scripts can also be in a subfolder of the R project folder to make uploading to github
and version controlling with git easier.

Example

Project Root Folder

[ | This PC DATA (D) Desktop * Temple Postdoc * Caribbean Macrosystems

Name Date modified Type

l code 2 File folder
l data File folder
B references 2020 1:11 PM File fol

11



Code Folder

B > ThisPC

DATA (D)

Name

l caribmacro
l caribnet
B google ee

Temple Postdoc Caribbean Macrosystems

Date modified Type

File folder
File folder

File folder

e caribmacro and caribnet are R Project folders

e google_ee is java script code used for Google Earth Engine

Data Folder

This PC > DATA (D2 Desktop

Name

B od

B raw

B (0) CHANGELOG bt

B () READMED

ﬁ caribmacro_Herp_Records_IMG_w4.csv
. caribmacro_Herp_Records_Meta_Data.txt
Zi caribmacro_Records_JMG_v5.csv

. caribmacro_Records_Meta_Data.txt

’Zi caribmacro_Splist_CaribHerp_2020-01-2...

Temple Postdoc

Caribbean Macrosystems * data

Date modified Type

File folder
File folder
Text Document

Text Document

1KB
900 KB
Text Document

2020 9:30 AM Microsoft Excel Co...

Reference Folder

[ | This PC DATA (D:) » Desktop > Temple Postdoc *> Caribbean Macrosystems * references

MName Date modified Type Size

B caribbean_eco File folder
community_assembly

invasive_sp

2021 1:22 PM
2021 1:22 PM

stat_ methods File folder

n
n
l sp_accounts
n

Inkpen_2017[Are Humans Disturbing Con... / A
21 10:21 AM

be Acrobat D...

Liang et al_2021[Niche variation across h... Adobe Acrobat D...

Submission Folder

12



[ This PC DATA (D) Desktop Temple Postdoc Carnibbean Macrosystems * submission

Name Date modified

B figures 471/2021 1:09 PM

A olid

nacro_sr_drivel anuscript_JMG_v8 MRH....

‘E caribnet_shipping_manuscript_JEF_v1.docc 3/17/2021 743 PM

e As you can see from the file names, there are 3 different manuscript drafts in the root folder from 2
different subprojects. You can have these like it is shown or you can have separate subfolders for these
manuscripts (recommended).

File Naming

e File names should be easy to understand, give information about the data, and be con-
sistent

Surprisingly, file naming is one of the most important aspects of data management. File names should
include all the information needed for someone to know what a certain data file is and for what project it
is/was used. All components of file names should be in lower case (except for abbreviations and initials) and
should use “_” instead of spaces. NOTE: file names should be unique so that no two files have the same
name across the entire project.

The iEco File Naming Convention
< Project Name > __ < Data Type > _ < Author Initials > _ < Version >

Project Name: The first part of the file name should be the name (or agreed upon abbreviation typically
same as R Package name) of the project you are working on. For example, caribmacro is the abbreviation
(and package name) for the Caribbean herpetology macrosystems project (make sure to check with the PIs
about what the name and abbreviation of your project is).

Data type: states what the data is. For example, for the occurrence of spotted lanternflies, the data type
would be ‘occurrence’. For manuscripts and other types of files this is the name of the specific file. For
example, for the manuscript on the drivers of herp species richness in the Caribbean, the data type would
be ‘sr_drivers_manuscript’.

Author Initials: are the three (if applicable) initials of the person who created the data file (and for
manuscripts, the person(s) who edited the file). For example, if Matthew Richard Helmus created the
spotted lanternfly occurrence data then the author initials should be ‘MRH".

Version: the version of the data and is used for version control. For the raw data the version should be
‘raw’, for the published data the version should be ‘final’, and for all other versions the version should be
v0, v1, ... , v{number of version before final}. See the Version Control section for more information about
versions.
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Therefore, the file name for the second version of the occurrence data that Matt Helmus made for the SLF
project would be:

SLF occurrence. MRH v2

And the file name for the raw and final versions of the occurrence data Matt Helmus created would be:

SLE occurrence. MRH raw

SLF _occurrence_ MRH __final

Dates in file names If the file is for a specific date, such as the photo back ups of the raw data sheets
discussed in the Data Collection section or dictated observation recordings, you should include the YYYY-
MM-DD date before the author initials. For example:

SLF__survey_ photobackup_ 2020 — 04 —24__MRH_raw

If you have multiple date specific data files from a single date, add something to the name to make the two
files unique (e.g. site, observer, time, survey number, etc.).

The order of the parts of the file name are important for the organization and sorting of files. With the iEco
Lab naming convention, all of the SLF data will be grouped, and the data types within the SLF project will
be grouped and ordered in ascending version or date.

Other File Types

For some data, such as those created through ArcGIS, file names can have limits for the number characters
in the name. In these situations, the Project Lead and the PI(s) should discuss a naming convention for
those specific cases. However, one possible alternative is to house these files within a folder that is named
according to the naming convention for the lab and then the individual files within the folder can have
simpler names and versioning attached to them.

For other common data types the iEco Lab has created the following naming conventions:

File Type Convention

Base Naming Convention < Project Name > __ < Data Type > _ <
Author Initials > < Version >

Audio-Visual Files < Project Name > __ < Data Type > _ <
Date > _ < Version >

Spatial Data < Project Name > __ < Data Type > _ <
Projection > < Version >

Manuscripts < Project Name > __ < Manuscript Name >
< Author Initials > < Version >

Edited Manuscripts < Project Name > __ < Manuscript Name >

e < Author Initials > < Version > <

FEditor Initials >




If a type of data is not in the above table, then you should use the base convention. In all of these conventions,
the version is only needed if the data will be edited or modified in any way. This includes modifications
within a statistical software, even if the modified data are not saved. Additionally, these conventions can be
changed if needed. However, if a naming convention is changed then the new convention(s) must be recorded
in a text file within the root project folder.

File Documentation

¢ Documentation files describe the data by stating their authors, methods, editing, and
attributes
e The documentation files include Readme, Changelog, and Metadata files

File documentation tells anyone who wants to use the data, including yourself, what the data is and why,
where, when, and for whom the data was collected. It will also let the user know how the data were processed.
This is done through the inclusion of 3 separate text and/or CSV files. However, it is recommended that
these files be text files so that they are easily distinguished from the CSV data files.

Readme File

This file includes the title of the data set, the author(s) of the data, a short description of the data, any
important methods used for data collection and processing, funding sources, and any other pertinent in-
formation. If your data does not include that many files and types, you only have to create one Readme
file for all of the data. However, if you have many data files and/or your data consists of many types, you
should make multiple Readme files for each data file (or type if you have a lot of file of the same type such
as photographs). Below is an example of a Readme file for the Caribbean Macrosystems project:

7| README - Notepad - O x

File Edit Format View Help
Dataset Title: Island Level Species Occurrence ~

Author(s): Matthew R. Helmus, Jocelyn E. Behm, Jason M. Gleditsch

Description: Species occurrence data for all herpetofauna on all islands
in the caribbean Ecoregion and Bermuda. Islands missing from the
dataset are assumed to have no herpetofauna present

Methods and Processing: Species names and taxonomy were checked against
four different databases: caribHerp, GBIF, ITIS, and cOL. Island
names were checked and standardized with CaribHerp, Powell and
Henderson 212, and Google Earth. Island banks were delineated
following the criteria in Hedges et al 2019 using the General
Bathymetric Chart of the Oceans 2014

Funding Source: Temple University Center for Biodiversity and Department
of Biology

Supplements: This data can be joined with the island, bank, species, and
shipping network datasets within the Caribbean Macrosystems project.

This data was used in the following publications:

15



Metadata File

The file that describes the data, including data types, units of measure, factor levels, and a description of what
the data represent. It is easiest to create metadata files as a CSV file then changing the file extension to .txt to
make these files easily distinguished from the data files. We are currently working on a metadata() function
in the iEcoDMP package to make the creation of these file easy (iEcoDMP is currently under construction).
Below is an example of a metadata file for the bank data used in the Caribbean Macrosystems project:

Column Type Format/Units Range Missing Values Description

bank Categorical 78 Levels Names of the banks used in the Caribbean species richness analyses

Area Numerical mA2 0.02 -- 110708.6 The land area of the bank

|AOE Numerical ma2 0.03 -- 223980.93 Area of extent of the bank calculated by taking the area of the minimum cor
Spread Numerical 0.00423 - 1388.00 Spread of the islands in the bank calculated by dividing the bank area by the
|Number Numerical 1--1388 Number of islands in the bank

DEM.max Numerical m 1--3091.0 The maximum elevation of a bank determined from the SRTM Digital Elevati
DEM.mean Numerical m 0.5773 -- 403.4417 The average elevation of a bank determined from the SRTM Digital Elevatio!
DEM.sd Numerical m 0.0 --449.248 The standard deviation for the elevation of a bank determined from the SRT
is0.PC1 Numerical -2.337 -- 8.5506 The scores of the bank along the first principle component from a principle «
is0.PC2 Numerical -3.04 -- 2.0846 The scores of the bank along the second principle component from a princip
min Numerical sgrt(m) 99.07 -- 1032.41 The squareroot transformed distance in meters to the nearest bank

'main Numerical 'sqrt(m) 162.4 --1032.4 The squareroot transformed distance in meters to the mainland

source Numerical sgrt(m) 0--12215 The squareroot transformed distance in meters to am evolutionary source
anthro Numerical 0.0 -- 0.65361 5 The proportion of the bank that falls into the cropland, urban, and half of th
green Numerical 0.0--1.0 S The proportion of the bank that falls into the forest, shrubland, savanna, gra
ships Numerical 0--1328 The number of ship visits to a bank from outside the bank summed over the
pop_avg  Numerical 0--20237242 The human population of a bank averaged over the years 2000, 2005, 2010,

Changelog File

A record of the changes you made to the data. They should be organized by version with each change made
grouped by which version that change was made on. Changelogs can be made for entire projects, groups of
data within a project, or single data files. In the case of entire projects and groups of data within a project,
the changelog should be broken into sections for each data file name followed by each version of that file.
Even if all of the changes and or edits to your data are made with R code, you should still have a changelog
that at least provides the location of the data editing script and a brief description of what is done with that
code. An example changelog for the Caribbean Macrosystem biodiversity data is below:

| *(0) CHANGELOG - Notepad

File Edit Format View Help

- ] X

caribmacro_Herp_Records_JMG

v@ - created by removing non-Caribbean banks and non-herps from 'caribmacro_Records_JMG_v3.csv'
-- removed banks = "florida", "hawaii", "mainland", "nicaragua", "okinawa and bonin isl

vl
v2

v3

-- removed record types = 'snail’, ‘insect’', 'bird', 'mammal’, ‘sea.turtle’
created a 'taxon' column to denote if record was for an amphibian or reptile
updated the 'genus' and ‘species’' columns to match 'binomial.cleaned’
for records GK.@402 and GK.@832 changed bank from jamaica to pedro

for records GK.e@29, GK,e817, GK.@@3@, and GK.0031 changed bank from jamaica to morant

created a bank level status column

-- in this status column 'X' denotes a genus level id that should be removed from bank

for entry GK.e@21e changed status from 'N' to 'E’

recreated from ‘caribmacro_Records_JMG_v5.csv'
-- used same criteria as ve

caribmacro_SpList_CaribHerp 2@2@-01-27 IMG

ve

downloaded all Caribbean herp species from caribherp.org on 1-27-2020
removed unwanted spaces (random ones ant end of data point) from all columns
created SP_ID column for a future unique identifier for each species

-- currently populated by NAs

split off the latin names from the 'SPECIES (AUTHOR(S) AND YEAR)' column into a new 'Latin

made new column 'Genus' for each species' genus name
made new column 'Species' for each species' species name

[P RD DU SRV I TNPUPR [P PR RPN D SRR S PP Favimiian AN anim temand L
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Note: that in this changelog there are multiple files with each file having its own section for each of its
versions (for caribmacro_Herp_ Records_ JMG there are 4 versions).

Also, note that the file name for the Changelog starts with a “(0)” this is to make the changelog easy to find
in a folder with multiple files in it. This can be done for all of the File Documentation files to make them
easy to find.

File Documentation Naming and Storage

The documentation files should be kept in the data folder. It is up to you if they are kept with the data
or within their own subfolder named ‘File Documentation’ that is in the root data folder. The naming

conventions for these files are as follows (there should be ¢’ between each part):
Document Type Naming Convention
Meta Data < Data File Name > METADATA
Readme Files < Project Name > _(0) _README

Project Changelog Files < Project Name > _(0)_CHANGELOG
Individual Changelog Files < Data File Name > CHANGELOG
Individual Readme Files < Data File Name > README

The ‘(0)’ is make those files easy to find since they will be at the beginning of the project group when the
files are sorted by name.

Version Control

e Data version control should be done manually by adding the version at the end of the
filename

e At least three versions of the data are required: raw, v0, and final

Version control is another essential part of proper data management. With high quality version controlling
you will never have to worry about making an error during your data processing because, if you do, you can
always revert back to an earlier version of your data. The frequency in which you create new version will
largely depend on how you process your data. You should create a new version every time you remove or
add a large portion of data as well as every time you edit a large portion of data. Small changes do not
require new versions until they sum up to a large portion of the data. However, all changes no matter how
small need to be logged in both your file documentation (i.e. Changelog; see File Documentation section)
and in the code you wrote for data processing (see [R Packaging] section).

Versions

At the very least you should have 3 versions of your data:

o araw file that you should never edit (denoted ‘raw’ in the file name)
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e an initial version (denoted ‘v0’ in the file name)

« a final version that you used for your publication (denoted ‘final’ in the file name).

Any additional versions created during your data editing and processing should be denoted by v1, ...
v{number of version before final} in the file name. If you think you will have more than ten versions then
put a ‘0’ in front of the version number for versions 0 through 9 (i.e. make them version v00, v01, v02, ...
, v09). If you move directly from the initial version to your final version you will use for analysis, then you
will only have these three versions (raw, v0, and final). However, it is good data hygiene to export several
versions from your R code so that any mistakes can be easily diagnosed if the need arises.

The easiest way to do manual versioning as described above is to set data processing goals and for each goal
create a new version. For instance, if you are working with spotted lanternfly occurrence data, your first
data processing goal may be to check, correct, and standardize every location name. Once you do this you
would then create version vl. You then may set the goal to include data from a different state (the data
from the other state will have a raw file in the raw data subfolder). Once you do that you would create a
new version, v2, and so on. A typical first data processing goal is reformatting the data to adhere to the
guidelines set forth by the DMP (see Data Formatting section) meaning that the v0 version does not have
to be formatted as the DMP states. The frequency that you make versions is up to the you, but the more
versions you make the easier it will be to fix any mistakes made during data processing.

These versioning guidelines are for anything produced during a project which includes, but is not limited to,
data tables, GIS data, photographic data, video data, non-R scripts, figures, and manuscripts. Versioning
for R scripts will be discussed in the Git R Script Version Control section.

Example Here is an example of file versioning that may occur that does not follow typical data versioning;:
If you are working from multiple data files that will be compiled (e.g. data collected by many researchers),
then the compiled data file will be your raw data and have ‘raw’ as the version in the filename. This data
file will be saved in the raw subfolder of the data folder of you project and never edited (except maybe if you
compile the data again). You will then copy that data file into your root data folder and edit it. These edits
will be logged in any code you use AND the changelog. Once you edit a significant portion of data then you
will resave the data changing the version in the filename to v1. The v0 version will then be moved to the
‘old’ subfolder of your data folder. You will then edit the v1 version. These steps will be repeated, updating
the version number, until you have created your final version. In your data folder this file will still have a
version number. This is in case you will continue editing these data after publication of your final version.
All older versions are moved to the old files subfolder. The final version will then be saved in the data_ raw
subfolder of your R project folder and have ‘final” as the version in the filename. This is the file you will use
in your analyses and upload to a data repository upon publication. If you do all of your editing with R code
and do not want to export any incremental versions, then you will load the v0 version into R, edit it, and
then export the final version into the root data folder and the data_ raw folder of the R project folder.

Complex File Types For more complicated data or filetypes that may have limits on the number of
characters (e.g. GIS files), you should have those files in a folder for that specific data file and then name
that folder using the file naming convention and version control the folder (or in some cases the simpler file
names in the folder).

Versioning Software
If you would like to use a versioning software talk to the Pls to discuss what you would like to use. However,

whatever versioning method you use, everyone involved with the data processing for your project should
have access to previous versions, or you need to be available as a point of contact for everyone who has data
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questions (decisions about data access should be made on a project by project basis with the Pls, see the
Pre-Project Planning section).

See LINK for a list of software. However, use caution since automated versioning of some data types (e.g. GIS
data, large data sets, etc.) can require an immense amount of memory which renders their use extremely
inconvenient. When looking for versioning software make sure the user has the ability to control when new
version are made.
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Data

Data Collection

This section is aimed at providing guidelines for the treatment of data while and after it is collected and
before it is transcribed into a computer file. During this period, data is the most vulnerable to loss or other
issues that decrease its usefulness. Therefore, proper data management during this period is absolutely
essential!

Field Data

e Data should be recorded with dark pen and never erased or scratched out

When collecting data, a dark inked pen should be used. This ensures that information will not be lost due
to pencil lead being rubbed off. Additionally, pen forces changes made to the data in the field to be tracked
on the page (i.e. you cannot erase). If a mistake is made, the mistake should be crossed out with a single
line and the initials of the person making the change written near the change. Information should NEVER
be scratched out so much that the information being changed cannot be recovered.

If you are worried about rain or water damage to your data sheets, then you should use All-Weather paper
and an archival or All-Weather pen. However, these types of pens can be expensive, so a pencil can be used
when necessary (with the permission of the PIs or project lead). If a pencil is used, the data recorder needs
to press hard enough that the pencil writes as dark as possible. The same guidelines for making changes in
the field should be followed so that the changes can be tracked.

After each day of data collection in the field, the data sheets should be legibly photographed or scanned and
saved to your project Drive Folder. This provides the most basic back up that you can go to if data is lost.

For audio-visual data, information about the data, such as the date, time, study name, person taking the
recording and any other information necessary for the independent comprehension of the data, should be
included as a message in the frame for images or at the start of video and audio recording. This makes the
file self-identifying in case that information is lost elsewhere. For remotely collected audio-visual data, this
can be done immediately after the data is collected (see the Data Formatting section).

Lab Data

e Data collected in the lab should kept together in a lab notebook and recorded in dark
ink

Data collected in a lab should be collected in Lab Notebooks. Lab Notebooks can be actual notebooks and
will be provided by the PI (please ask if they are not readily available). Binders should be avoided when
possible in lieu of bound notebooks because pages area easily removed from or fall out of binders. If you
a collecting data for the development of a product for patenting, then you are required to use a bound
notebook and to review the institution’s policy on lab notebooks. Since ecological research rarely produces
patented products, we will not give guidelines for keeping a legal lab notebook. However, if you want more
information on this, then it is recommended you review “Writing the Laboratory Notebook” by Howard
Kanares (LINK).

Key points in keeping a Lab Notebook:
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1. Neat and legible handwriting in dark ink; not pencil if able

2. Procedure/Study title and purpose clearly stated

Methods described clearly and succinctly, with errors and steps taken to correct them
Calculations performed neatly showing intermediate steps

5. Errors crossed out with a single line, initialed, and briefly explained

6. All pages dated at the top and numbered at the bottom

When making a Lab Notebook, make sure to leave enough room at the beginning for a table of contents.
Every new procedure, experiment, notes, calculation, etc. should start on a new page with that page being
the front of the right page (i.e. the odd-numbered pages). These new pages will be what is recorded in the
table of contents for each procedure, experiments, set of notes, etc. For the sake of being able to easily find
a specific date or page number, the date should be recorded at the right-hand side of the top of the page
and the page number should be written at the right-hand side of the bottom of the page.

All information about a procedure, experiment, notes, calculation, etc. should be recorded in the Lab
Notebook. This includes data recorded on or collected with a computer system. The data should be printed
out and taped (never glued) into the Lab Notebook on the appropriate page. These entries should be
accompanied by a brief description of what it is. If the data collected by a computer is too large to print
and tape into the notebook then the name of the data file and where it is located should be recorded along
with the location of any backups/copies made.

As with the collection of field data, information in a Lab Notebook should never be completely removed
from the book. Mistakes, such as misspellings, should be crossed out with a single line and initialed. It is
also good practice to give a short (only a few words) reason the change was made.

Lab Notebooks should NEVER be taken out of the lab or the project lead’s possession. Ideally, Lab
Notebooks should be kept in a cabinet/drawer in the lab space so that collaborators can easily find them.
However, it is also acceptable for lab notebooks to be kept in the office of the project lead. To protect against
Lab Notebooks being removed from the lab, digital scans or photographs of the notebook’s pages should be
created periodically (ideally weekly). This allows for the consultation of the Lab Notebook when not in the
lab and acts as a backup of the information in the notebook.

Data Transcription

« Digitize and back up data soon after collection

Ideally, the data should be transcribed into a computer each day after collection as well. If that is not
possible, then data should be transcribed weekly. This makes transcribing data easier and reduces the
chances for transcription errors for multiple reasons. First, data will not pile up, and when data piles up and
transcribed all at once, errors are more likely due to rushing and fatigue. Lastly, regular data transcription
helps for understanding messy handwriting in the field. The data will still be fresh in the mind of the
researcher and any temporary technicians will still be around, both of which are important for deciphering
handwriting.

If multiple people are transcribing data, then they should each be working with separate but identically
formatted spreadsheets. This reduces the risk of someone accidentally overwriting or deleting data. It
is then the responsibility of the data manager or project lead to compile this data in a reproducible way
(e.g. with R script or detailed methodology). The compilation of data can occur whenever the data manager
deems it necessary.
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Once data is transcribed into the computer, it should be immediately backed up as described in the Data
Backup section.

Quality Control During Transcription

e Spreadsheets should resemble field data sheets as much as possible
— The spreadsheets are then formatted by the Data Manager

¢ Use column rules or data entry forms for transcription quality control

Errors are often introduced into data during the transcription process. This could be due (but not limited
to) interpreting messy handwriting, mistyping information, skipping over information, and/or overwriting
preexisting data. There are a few steps that can be taken to reduce the risk of these occurring.

The first step that can be taken is to have only one person (preferably the data manager) create the data
entry spreadsheets and have everyone use this spreadsheet to enter data. This makes sure that all the
spreadsheets will have the same formatting (e.g. file type, column headers, number of columns, etc.). It
would then be up to the data manager to disseminate these data entry spreadsheets to the researchers
entering data. Additionally, if these spreadsheets are used for the transcription of data from data sheets, the
data manager should make them to resemble the data sheets as much as possible, and then when the data
has been entered or compiled the data can be formatted correctly (see Data Formatting section).

One option to reduce the errors introduced during transcription is setting column rules which reduce the
risk of errors due to mistyping, skipping, or erroneous interpretation of information. The simplest way to set
rules for columns within a spreadsheet is through data validation tools of the common spreadsheet software.
However, these data validation tools are not required and are just recommended if there are many researchers
entering data and/or you have researchers with disabilities such as dyslexia or dysgraphia working for you.

Excel In Excel this is done by highlighting a column (that already has a header) and then clicking the
“Data Validation” icon in the “Data Tools” section of the “Data” tab as shown in the figure below.
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The rules for a column can be a list of values (for nominal data), a range of values that can or cannot include
decimals (for numerical data), dates with a certain range, times within a certain range, or a text string of a
certain length. These rules can be made using any logical operators (i.e. “between”, “not between”, “equal
to”, “not equal to”, “less than”, “greater than”, “less than or equal to”, or “greater than or equal to”).
They can also ignore blank cells or return an error if nothing is entered (recommended, see Data Formatting
section). For nominal data, the list of values can also be displayed as a drop down menu for each cell further
controlling the entry of data. However, it is important to note that in certain software, like Excel, these rules
may not be case sensitive. You also can typically specify the type of error that occurs (e.g. warning or a stop
error) and the message displayed if an entry breaks these rules to give the transcriber further information.
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Google Sheets In Google Sheets this is done in a similar fashion by clicking “Data” in the top menu and
then “Data Validation” in the dropdown menu that appears as in the below figure.
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Google Forms Unfortunately, these rules do not protect data that has already been entered unless the
data manager regularly locks the cells with data already entered in them. To make sure this doesn’t happen
while keeping the rules in place a data entry form should be used. This can be done in both Excel and
Google Sheets. However, it is a little bit easier to do with Google Sheets.

Data entry forms for Google Sheets is done through Google Forms which can be created with the new button
in Google Drive:

I— New

Or by opening a new Google Sheets and clicking the “Tools” in the top menu and “Create a Form” in the
drop-down menu as in the figure below.
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A new Google Form will be created that will create a new Google Sheets file. The Google Forms are organized
by questions and will make a column in the new Google Sheets file for each question with a header equal
to the question title. For each question you can have drop down menus for nominal data or other data
validation rules similar to those in Google Sheets depending on the type of data that should be entered as
the “Short answer” option for the question. For more advanced Google Sheets users more data friendly entry
form can be created that may require a little bit of JavaScript coding and instructions can be found HERE.

Excel Forms In Excel, you have to add the “Form” button to the Quick Access toolbar which can be
done for the current spreadsheet or all spreadsheets. This is done by clicking “File” then “Options” and
then select “Quick Access Toolbar” in the pane on the left-hand side of the new window that pops up. You
will now see two selection panes: one to select commands and one that shows the commands already shown
in the Quick Access Toolbar. Most likely you will have to select “All Commands” in the drop-down menu
under “Choose commands from:” and once you do that you should be able to find and select “Form...”".
With “Form...” selected you then click the “Add »” button and then the “OK” button. You should now
see the “Forms” button (shown below; although the colors may be different) at the top of the window of
your spreadsheet.

Now when researcher go to enter in data, they should highlight all by clicking Ctrl+A and then clicking the
“New” button to enter a new row of data. They can ‘Tab’ through the entry fields and hit enter to add the
new row of data. NOTE: if the “New” button is not clicked when the form is opened it will overwrite the
existing data. Any data validation rules you set for the columns will be inherited to the entry form.

Additionally, if your spreadsheet is saved onto OneDrive or SharePoint, then you can create a form that is
browser based similar to that of Google Forms.
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Relational Database Form GUI If you are using a relational database, an entry graphical user interface
(GUI) can be created in Access that can check entries against entries in the table(s) for data quality control.
These types of data entry GUIs can also populate the related table when necessary based on the record you
are entering.

Schema Schema can also be used for quality control. Schema are files that link to your tabular data files
(e.g. csv files) that assign attributes to the cells of the table, and therefore, can check for inconsistencies.
However, schema require programing knowledge and may not be well suited for every type of data. For more
information on schema check EML’s website and the File Documentation section.

Data Proofing

e A secondary check by someone who did not enter the data should be done

After data has been entered, someone who did not enter the data should compare the hand-written data
sheet(s) to the entered data. When doing this, there should be a proofing column(s) in the data file that
gets checked off once the data has been checked, and has notes for corrections and/edits that were made
as well as a column for the reviewer’s names or initials. Again this is most important for when there are
many researchers entering data but will always help to catch and correct any errors early. If there is only
one researcher entering data, then having that researcher go back and recheck the data they have already
entered at a later date (e.g. a week later) is a easy way to do data proofing even on a small project.

If there is too much data for the data proofing stage to be reasonably done, then a random subset of the
data entered by each data transcriber should be proofed.

Further proofing will also be done during data formatting (see the Data Formatting section) and should be
always be done before analysis.

Data Mining

e« Work from master source list and compile and backup regularly

Data mining is the practice of obtaining data from large sources of data, and therefore, when data mining,
it is inefficient to record data in a written format. For the purposes of this section we are also including
obtaining data from scientific literature, online polls, social media, and any other digital sources of data.

These types of data are often collected using a team of researchers. Therefore, it is crucial to be organized and
well documented, so you do not repeat data collection and/or lose data. Working from a master list of data
sources (e.g. publications, websites, surveys, etc.) allows for researchers to sign up for the mining of certain
sources, and therefore, more researchers than what is prescribed by the protocols will not collecting data
from the same source. Additionally, researchers collecting data should be working with separate spreadsheets
to avoid accidental deletion or overwriting of data.

The separate spreadsheets will then be compiled by the data manager. Since data mining does not have
paper copies of the data, the compilation of data should occur at frequent intervals so that back-ups of the
data, as described in the Data Backup section, can be made during collection.

With the creation of cloud-based file storing services, the collection of data through data mining can occur
completely on the cloud. By using cloud-based services researchers can mine data from sources using their
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personal computers while still giving access to the data manager for frequent data compilation. Therefore,
cloud-based data mining is encouraged. In this framework, the data lead will share a folder with all of the
researchers on the project and the researchers would each have a sub folder containing the spreadsheet(s)
they are working from. The master list(s) for the researchers to sign up for sources and subfolder(s) for the
sources would be located in the root folder (i.e. the shared folder). The folder for the compiled data should
not be in this shared folder to avoid accidental deletion and editing by the researchers. The only people
who should have access to this folder are the project lead, data manager, and/or the PI(s) as decided by the
PI(s) and project lead.

Data Formatting

This section provides the guidelines for how to build and format data tables so that they are easily manipu-
lated, edited, analyzed, and most importantly understood. In addition, we will discuss the proper formatting
of other types of data as well such as spatial and audio-visual data. The formatting outlined in this section
should be established well before the final version of the data is made meaning that the early files that are
being manipulated/edited do not necessarily have to be formatted this way. However, it is highly recom-
mended that the data (especially data tables) be formatted following these guidelines during the first edit
(i.e. the edit(s) creating version 1).

¢ You should always check your data to see if it readable with open source software

Data Tables

e Data tables should be saved as CSV files and be in long format

e Column headers are required, should be consistent, and easy to understand (see iEco
Header Conventions)

e All text should be formatted consistently with dates in the YYYY-MM-DD format

e All cells should have values and if a value is missing then an NA should be entered

All data tables should be saved as a comma delimited file (never tab delimited) such as a CSV (comma
separated values) file. The reason for this is that Excel files may not be able to be easily read by researchers
without Microsoft Office. This is also the same for other proprietary file types such as Access. If you are
using a relational database software, such as Access, then the various tables should also be saved as CSV
files. This is also true for data stored in R file types (e.g. Rdata), because not everyone knows how to use R.

Even though CSV and comma delimited text files are essentially the same, CSV files are the preferred format
for data tables over text files because the .csv extension provides an easy way to sort or filter out the data
files since the documentation files (see the File Documentation section) are often saved as text file (.txt
extension). Additionally, CSV files are readable by most software and easy to load into most computer
programs.

Data tables should always be in a long format unless a long format is too cumbersome (e.g. large community
data). A long-formatted data table is a table where one row corresponds to the minimum observable unit of
data (e.g. a single trial for an individual in a repeated behavioral assay) that has multiple rows for grouping
factors (e.g. individual) and single columns for data (e.g. choice). However, even if long formats seem too
cumbersome, long formats are better than wide for many reasons. Specifically, long formats allow for the
easy conversion to other formats. Long formats also allow for the easy aggregation, subsetting, and analysis.

Below is an example of data in a long format:
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Date Site  Species Sex  Count
04/24/2020 A Grackle M 2
04/24/2020 A Grackle F 1
04/24/2020 A House Finch M 7
04/24/2020 A House Finch F 9
04/24/2020 A American Robin M 4
04/24/2020 A American Robin F 3
04/24/2020 B Grackle M 0
04/24/2020 B Grackle F 2
04/24/2020 B House Finch M 10
04/24/2020 B House Finch F 15
04/24/2020 B American Robin M 4
04/24/2020 B American Robin F 6

Every data table is REQUIRED to have column headers. Column headers should be short and easy to
understand. Avoid using symbols and abbreviations whenever possible. For example, instead of using
‘d¢’ to denote the distance to Cuba, use ‘distance_cuba’ Abbreviations are helpful, especially during
analysis coding, but can lead to difficulties in comprehension. Make sure that if you use abbreviations
you use common, easy to understand abbreviations. For instance, instead of ‘distance cuba’ we could use
‘dist__cuba’ since “dist” is an often-used abbreviation for distance. Here at the iEco Lab we prefer you to
not use abbreviations except for instances when the column header is very long (a general guideline is that
headers should be no more than 15 characters and therefore ‘distance cuba’ is not too long). Additionally,
for column headers, spaces should be replaced with an underscore (i.e. “_”). Some analysis software and R
functions cannot handle spaces in column headers, which can cause the data to erroneously load or return
errors. Column header conventions should be made for individual projects with multiple data tables or for
whole labs. Column header conventions help to make data easily combined for analysis and understood.

The iEco column header conventions can be found HERE. These conventions can be updated as needed, so
if you are creating a data table and the convention for a type of data in a column of your table has not been
made, feel free to make the convention for the lab (remember, with great power comes great responsibility).

Column headers also should not include units. The units of measurement should be included in you meta
data for that file (see File Documentation section). If you have multiple columns that have the same data
but different units that are easy to convert (e.g. m and km) then delete one of those columns and convert
in your analysis code if needed. The only exception to not having units in the header is if you have the
same data with different units that are not easily converted between each other and are on very different
scales (e.g. atmospheric pressure, temperature), or if for some reason you need both metric and imperial
units (e.g. for making maps for US and non-US users).

The format of any text (including numbers) in your data table should be as basic as possible. The file types
that should be used (i.e. csv or text files) strip all formatting from any text. This can cause issues if you
use special characters, symbols, and fonts. Therefore, all special characters and symbols should be avoided.
Additionally, most analysis software do not know how to read special characters or symbols.

Here is a list of acceptable symbols and the top 11 worst symbols:

Acceptable Symbols :

Name Symbol

Underscore -
Dash -
Veritcle Line |
Semicolon ;
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Name Symbol
Period

Symbols to Avoid at All Cost :

Name Symbol

Dollar Sign $
Question Mark ?
Percen Sign %
Number Sign #
Commercial At Q
Comma ,
Colon

Backslash (Reverse Solidus)
Quotation Mark
Apostrophe

Accent

=_— -+

For text strings (column headers and factors with more than 1 character) avoid using capitalized letters
where possible. If you do use capital letters, make sure you are consistent with how you use them. For
example, if you have binomial species names and you capitalize the genus but not the species, then make
sure you use that same framework throughout. In the above example the first letter of each word in the
species name is capitalized throughout that column. However, a good rule of thumb to follow is to never use
capitalization where possible.

Entry IDs should be included in all tables you produce. Entry IDs are unique identifiers for each entry
(i.e. row) in a data table. This allows for easy tracking of specific changes you make to the data as well
as allowing for the easy creation of relational keys between your data tables for easy merging. Avoid just
using simple row numbers for these IDs. Good entry IDs are alpha-numeric text strings that provides some
information about the entry, allows for easy sorting, and should be the same number of characters for each
entry. These IDs should not be typed in with the data and be simple (few numbers and characters) or
complex. It is often easiest to make IDs by concatenating multiple columns together with a separating
symbol.

For example, a good entry ID for the first entry in the above table would be 20200424 _A_ 02_ M” which
tells us that entry is for site A, the second species alphabetically, is male, and was made on a particular
survey day. We could also use that ID to sort so that the sites and species within those sites are alphabetical
from the earliest survey to the last.

Entry IDs should also be unique to the data table meaning that the ID scheme should not be repeated across
tables that may be later joined. The entry ID should be created at some point before the final version of the
data is created. The timing at which the entry ID is made depends on the specific needs of the project and
data editing. Once the entry ID is made then it is set for the entire lifetime of the data and should not be
change. However, it is recommended to create the entry ID after all of the large edits to the data are made.
This is because if large sections of data are deleted then you will have large gaps in the entry ID series. Do
not worry about adding data after an entry ID is created since it is easy to just continue the series where
you left off. Importantly, entry IDs should never be recycled even if an entry has been deleted. This could
make following the change logs difficult.

Dates in data tables should be in the format of YYYY-MM-DD, and no other format should be used. In the
above table the format used for the date is MM/DD/YYYY. This format is bad for multiple reasons. First,
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not every culture and, therefore, their computers use that format. In many regions, the day comes before the
month (i.e. DD/MM/YYYY). This can cause issues for dates like 4/5/2020. Is that April 5th or is it May
4th? Computers in different cultures will also ask that question and may just assume that the first number
is the day or month depending on its default setting. The year-month-day format with dashes in between
the year, month, and day is understood by all computers and software. Additionally, by having dates in the
YYYY-MM-DD you can easily sort your data by date. When including years in dates they always should be
4 digits so that 2020 is not confused with 1920. If you like having the character form of months (e.g. March
or Mar) in your data tables, then you should have that separate from the date in a new column.

Missing data should be handled the same throughout the data table. This includes any comment columns
you have in the table. NEVER leave cells blank for missing data. Blank cells have an ambiguous meaning
since they could mean that there was no data for that cell, the cell was accidentally deleted, or it was
erroneously skipped over during transcription. Instead, use something like ‘NA’ to denote missing data. It
is preferred to use ‘NA’ to denote missing data since it is read by R software in that way. No matter what
is the cause of the missing data (e.g. data not recorded, data not able to be recorded, etc.), missing data
should always by represented by an NA. If it is important for the project to differentiate between different
causes of NAs then this should be recorded in a ‘notes’ or ‘comments’ column. If a specific value is wanted
to denote a certain cause of missing data (e.g. NR for data not recorded), then that should be a decision
made by the PI and Project Lead. However, be careful when reading this data into statistical software since
they will not know what that value (e.g. NR) means and will likely read it as a character making the whole
column a character variable.

When creating data tables, the most important thing is the data to be consistent and the nature of the data
recorded in the meta data file (see File Documentation section). For example, species names should always
be either only common or only scientific in a single column, and in comment columns, if a comment means
the same thing, it should be kept the same (e.g. “date not recorded” is always entered, and never “date was
not recorded”, “date missed”, “unrecorded date” and so on). Further, in comments DO NOT use commas
to separate clauses. This is because in CSV files, commas are used to separate each field (i.e. column).

Lastly, make sure that there are no leading or trailing spaces in your data. This can cause some software to
mess up your data or treat text strings as separate levels of a factor even if they are identical except for a
trailing or leading space.

Now if we rework the above example table into the ideal formatting it will look like:

entry_id date site common sex count
20200424 _a_02_m 2020-04-24 a grackle m 2
20200424 _a_02_f 2020-04-24 a grackle f 1
20200424 a 03 m  2020-04-24 a house finch m 7
20200424 a_ 03 _f 2020-04-24 a house finch f 9
20200424 a 01 m 2020-04-24 a american robin m 4
20200424 _a_01_f 2020-04-24 a american robin f 3
20200424 b 02 m 2020-04-24 b grackle m 0
20200424 _b_02_f  2020-04-24 b grackle f 2
20200424 b 03 m 2020-04-24 b house finch m 10
20200424 b 03 _f  2020-04-24 b house finch f 15
20200424 b 01 m 2020-04-24 b american robin m 4
20200424 _b_01_f  2020-04-24 b american robin f 6

Now this table does not have any uppercase letters, has an informative alpha-numeric entry ID, the data is
formatted correctly, and the headers adhere to the iEcoLab Header Conventions (i.e. ‘Species’ was changed
to ‘common’ and there are no uppercase letters).
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Spatial Data

e Spatial data should be a CSV, shapefile, GeoTIFF, or netCDF file depending on the data
type

Spatial data is complex and requires thorough documentation in order to be read properly without distortion.
The actual formatting of the data itself is often dictated by the type of data they are. This means that one
overarching rule for spatial may not be applicable for the formatting of spatial data. At the bare minimum,
spatial data needs to have the spheroid, datum, and when applicable the projection well documented for
each file. Many of the file types used for spatial data have this information included in the file itself or in
auxiliary files. However, spatial data stored as a CSV often does not include this information, so it needs to
be supplied in a user made documentation file (see File Documentation section).

Point and vector (e.g. polygons) data types can be stored as CSV and shapefiles. However, CSV files
are better suited for point data than for vector data. For point data, the coordinates should be kept in
two columns named ‘latitude’ and ‘longitude’ for lat-long coordinates or ‘northing’ and ‘easting’ for UTM
coordinates. For UTM coordinates the UTM quadrat or zone needs to be documented which can be done in
the CSV file in a new column if working in multiple quadrats/zones or in the file’s metadata file. However,
it is recommended to use lat-long coordinates for final versions of the data that will be shared.

For vector data, CSV file can be used but they can be cumbersome to work with. Therefore, shapefiles are
recommended since they are readable with open-source software like QGIS. Shapefiles are nice in that they
automatically create the necessary documentation for geographic systems to properly read them. However,
this is done through multiple auxiliary files which can be easily lost if one is not careful with file management.
It is recommended that each shapefile and its auxiliary files are kept in individual folders which can be turned
into a zip folder for easy sharing. Keeping these files together also aids in version control when creating and
editing vector data and avoids the need to long file names for which some geographic software has limits.
Point data can also be saved as shapefiles if wanted but CSV files are often smaller. KML files (i.e. Google
Earth files) should be avoided for the storing and sharing of these kinds of data since it is difficult to read
outside of Google’s systems.

Raster data should be saved as a GeoTIFF file(s). GeoTIFFs are tif images that are georeferenced and are
tagged with the important georeferencing information (i.e. spheroid, datum, projection, etc.). These types of
files can be read by most software and programming languages and is in continual development meaning that
any compatibility issues for common software or programming languages will most likely be addressed in
future releases. GeoTIFF files can support both single and multi-band raster data (e.g. RBG aerial images).
For multi-band raster data, the individual bands can be stored as individual tif images or can be combined
into one file. If you store the bands as individual files, then you should follow the same folder organization
that was described for shapefiles in the above paragraph.

Spatial data with high dimensionality such as raster data with bands for different data types should be saved
as netCDF files. This file type is a scientific standard used for storing and sharing multidimensional spatial
data and recommended by NASA and other government agencies and can be read by most programming
languages and open source programs (i.e. panoply). However, they can be difficult to work with so these
types of files should only be used if needed due to the dimensionality of the data making the use of the other
file types too cumbersome.

For more information on proper spatial data management see:

Ramapriyan, H. K., and P. J. T. Leonard. 2020. Data Product Development Guide (DPDG) for Data
Producers version 1. NASA Earth Science Data and Information System Standards Office, 9 July 2020.
LINK
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Audio-Visual Data

e Avoid proprietary formats and include data information in the recording or picture file

Audio-visual data should only be stored in common file types that are able to be read by most software.
These file types include MP3 and WAV for audio files, JPEG and TIFF for images, and MPEG formats
(i.e. MPEG and MPEG-4: .mpg and .mp4 file extensions respectively) for video.

For Images, JPEG is recommended for photos taken in the field or lab if the loss of quality will not diminish
the data in the photograph (e.g. high contrast images, animal images, etc.). JPEG files are compressed
and the more they are manipulated the lower the quality of the image will be. However, because they are
compressed, they are usually smaller in size and therefore take up less memory. Additionally, JPEG are
readable on any operating system, can have metadata embedded in the file, and the loss of quality due to
compression can be mitigated with high quality cameras. Other file types for images such as RAW file types,
PNG, GIF, etc. should be avoided due to their compression techniques (for all but RAW) and the fact that
they are more difficult to read, often requiring proprietary software.

The TIFF file type should largely be reserved for images where the loss of quality will greatly diminish
the data in the image. TIFF files do not lose information when they are compressed, manipulated, copied,
re-saved, etc. This makes them great for figures, maps, and other complex images. However, because TIFF
files do not lose information during compression, they can be quite large and take up a lot of memory.
When using TIFF files for figures they should be saved at least at 300dpi (i.e. 300 dots per inch) since most
publishers require a figure to be a minimum of 300dpi resolution (some require 600dpi).

Like images, there are many file formats available for video. However, many of them are proprietary and
require specific software to read. MPEG is readable by most software and retains video quality while keeping
file sizes relatively small. Therefore, MPEG formats are recommended over MOV or WMV which were made
specifically for Apple and Microsoft products, respectively. Some digital video recorders (DVRs) record video
in H.264 and should be avoided when possible. H.264 video formats are typically used for constant recording
because the file sizes are extremely small which can be advantageous for 24hr monitoring of, for example, a
nest. However, the H.264 video format requires expensive software to read, and even though there is a free
program to work with these files, it is extremely difficult to work with.

Often the type of audio-visual file format is dictated by the hardware used to record it and the quality of
the recorder trumps the recommended file types. Therefore, it is important to make sure that you are able
to read the file types that specific hardware records before purchasing the hardware.

Outside of file type, the formatting of audio-visual data is dependent on the use of the data. However,
whenever recording audio-visual data, you should take the appropriate steps to make sure the recordings
and/or images are of the highest quality possible. There are many tutorials online for how to use various
hardware and the best practices for recording certain types of data.

A few practices that are recommended for all types of audio-visual data is to include the necessary information
to comprehend the data in the file and in a separate data table that included the file name in a column.
The bare minimum amount of information should be recorded is the date, time, study name, person taking
the recording. However, any other pertinent information for the comprehension of what the data show or
is for should also be included. This information can take the form of a label in the frame of a photograph,
a message board at the start of video, or a spoken message at the start of an audio recording. For data
that are remotely taken (e.g. camera trap images/videos), this information can be tagged to the video or
image through many kinds of image or video editing software. To do this, we recommend Adobe Bridge for
tagging any audio-visual data file with pertinent information because it is free to download and easy to use
for editing a media file’s embedded metadata. The information in the data table and the labels, messages,
and tags are important since it protects from information loss during the editing, coping, and/or sharing of
data.
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Data Backup

e Data should be backed-up weekly using the 3-2-1 strategy:

— 3 copies of your data
— 2 copies stored locally on different devices
— 1 copy stored off site (i.e. on the cloud)

e Data should ideally be backed up weekly and at least monthly

By far the most important aspect of proper data management is backing up your data files. Without proper
backup practices you risk losing all of your data if something happens to your computer. Additionally,
because you are a part of a larger research group, if something happens to you, such as moving on to a new
research group, the PIs and researchers will still have access to your data that you collected for them.

iEcoLab Backup Strategy

It is required that you practice the 3-2-1 backup strategy here in the iEco Lab. The 3-2-1 backup strategy
states that you should have at least 3 copies of your data, 2 of those copies should be stored locally, and 1
copy should be stored off site.

@ @ @ Backup Strategy

3 COPIES

2 COPIES

1 COPY

v

Local storage needs to be stable and can include your desktop computer AND an external hard drive or
flash drive, which is preferred; or two different computers; or multiple external hard drives. These two copies
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should be on two separate devices (i.e. do not have these two copies on the same computer or hard drive).
Additionally having them separate from your primary computer will help you get into a physical habit of
backing up data. Local storage does not include locally synced folders such as Dropbox, Box, and Google
Drive for Desktop. These folders are still linked to the cloud-based versions of the data and, therefore, are
not stable.

Off site storage is a cloud-based storage system. Here at the iEco Lab we use Google Drive for this. You
should have been or will be invited by the PIs to a shared drive they created for your project. All of your
data needs to be backed up to this shared dive. If you are already working out of a shared google drive or
folder, ownership of the drive or folder should be transferred to the PI(s) of your project.

However, we would like you to use the copies stored in the shared drive as your primary copies that you edit
and work with. That would mean that the copies on your desktop computer and external hard drive would
be your backup copies. The location of these backup files needs to be recorded in the project folder.

The person in charge of backing-up your project’s data should be the data manager, and proper backup
protocols require your data to be backed-up to the various places you have stored copies at least weekly. A
calendar reminder to for this.

There are free and paid software that will back up files for you on a regular basis. If you would like to
use these then make sure the software name, frequency of backup, locations of back-ups, and a link to the
software information page is recorded in the project folder.

Final Data Storage and Sharing

e Final data storage should be on an online data repository

o Data sharing permissions is determined by the Project Lead and the PI(s)

Final Storage

Once your data are finalized please make sure the final files are uploaded to the shared drive for your project
in the R project folder. Upon leaving the lab, any researchers that authored a data file are required to
meet with the PIs to make sure the final data are stored in a location the PIs can access and what (if any)
repository the data should be uploaded to. The PIs will then back it up as needed after this.

When your paper(s) that use data you created are published, you should upload just the data used for
that paper to an online repository. Many journals require this to be done when they accept your paper
for publication. If the journal has a preferred repository to be used or has a deal for free storage with a
certain repository, then please use that repository. Otherwise, we would like you to use Dryad for your data
(discuss this with the PIs to be sure and determine how payment will be processed). Unfortunately, github
and gitlab are not appropriate to use as an official data repository because they are not stable and therefore
is not accepted by most journals and funding agencies.
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Sensitive Data

Sensitive data, such as location data for endangered species at risk from poachers of personal information of
human subjects, should cleaned of any information that could be used for unwelcome purposes before publicly
sharing. This may include changing site names, removing GPS points, removing identifying information of
human subjects, and so on. Before sharing any data, make sure to check with the PIs to determine the
sensitivity of the information within the data you are sharing.

Sharing Data

Sharing the final or any version of the data files that you create or work with is strictly forbidden without
the written consent of the PIs. Written consent can be just an e-mail response but refrain from only using
verbal consent. The PIs, and in some cases the University or funders, are owners of the data, and therefore,
the data should not be shared with anyone without their consent.

34



Reference Libraries

¢ Reference libraries should be created through Zotero. Contact Dr. Helmus for access

Zotero Libraries

A single reference library should be made for each project. Here at the iEco Lab, we would like you to use
Zotero to build your reference libraries. Zotero is nice since it links with Microsoft Word allowing for the
easy conversion of citations and references between different styles. In the iEco Lab, you will need to contact
Dr. Helmus for access to a Zotero library that has unlimited size. The PI(s) and Project Lead will then
determine which researchers working on the project will have access to the library.

For more information on Zotero reference libraries watch VIDEO (1.75hrs) or visit WEBSITE

Reference Folder Libraries
However, libraries can also be built through folders broken up by subject, manuscript, or some other logical

category within the ‘references’ subfolder of the project folder. PDF files of papers should be named in the
following way:

< Author(s) > < Year > [< BriefDescription >]
For papers with more than one author follow in text citation rules. For example:
Weterings et al__2019[House geckos and epidemics].pdf

Perella and Behm__2020[Impact and Spread of Carib Exotic Geckos).pdf
Janzen_1985[0On Ecological Fitting].pdf
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Project Packaging

R Packages

« R packages should be made for better storage, communication, and sharing of code and
analyses

When organizing your analyses for a research project, it’s important to maximize two aspects: reproducibility
and ease of sharing. This will make the life of your collaborators, and crucially the life of “future you”, much
easier. R packages provide a great tool to create collaborative and reproducible code. An R package bundles
together the data your project requires, custom-made functions that can be used throughout your code,
vignettes that describe your analyses step-by-step, and a thorough documentation that helps you and others
to reproduce your analyses in the future. In practice, creating an R package boils down to:

1. organizing your project folders and files in a clever and consistent way
2. documenting thoroughly your steps and the tools you use.

Create a R Package

UNDER CONSTRUCTION

Build and Call the Package

Once you have populated your package (even just a little), you are ready to build it. This can be done
directly from RStudio, inside the R project containing your package. If this is your first package even, go to
Build > Configure Build Tools... Here you should tick the checkbox Generate documentation with Rozygen
and then tick Build & Reload in the window this prompts. You can now build your package. Go to Build
> Build and Reload (or Clean and Rebuild, depending on the version). This will build your package and
install it. You can now load it using library(packagename) and start calling your functions.

R Package Files

The basic structure of an R package is simple. Above is an example of a mock package called “packsample”.
Here we will take a quick look at the components of this package (and of any package), some of which will
be explained more in depth later on.
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Learning a2 data-raw
i lycormap.zip o DESCRIPTION
BB packsample @ b man
NAMESPACE
R packsample.Rproj
R
vignettes

o DESCRIPTION: the main text file containing metadata on your R package (e.g. who created the
package, who helps maintain it, what are the CRAN packages required for the package to work etc.)

e NAMESPACE: contains the names of the functions in your package. We will never manually edit
this file, which will be automatically updated using Roxygen (a ready-made package for package
development).

o R/: a folder containing individual R scripts where the package function are stored and described.

o man/: a folder containing the documentation for our functions which will be used to generate the
helpfiles. These will travel with the package and can be accessed by typing “’name_of the_function”
in the console (substitute " name_of the function" with the actual name of your function). This
folder, like NAMESPACE, will be automatically populated through Roxygen.

o data-raw/: folder containing all data files (in .csv or .txt format) that are necessary for your analyses.
It’s important to avoid naming this folder “data”, since a “data” folder is used to store .Rda files that
are shipped with the package (simlarly to the data mtcars contained in the package “datasets”).

o vignettes/: this folder is the heart of your analyses. It contains a series of .Rmd vignettes that
describe every step of the project, from data tidying and wrangling, to running models or simulations,
to displaying the results through tables and plots. The Rmarkdown allows you to create a very
thorough documentation, with text interspersed between coding chunks. Also it can be used to generate
automatically documentation for your package using “pkgdown”.

o packsample.Rproj: this is the RStudio project associated with our R package. It contains some meta-
data that allows you to always have the same interface every time you work on our package. Open this
file anytime you want to work on your package, and it will automatically take you to the right folder
and open up the vignettes, scripts and files you last worked on.

When creating a package in RStudio some of the files in the package folder are created automatically. In
addition, some files and folders will be automatically populated.

Whether you’re starting your project from scratch, or turning a collection of R scripts into a package form,
the process is pretty much the same. To create an R package, open a new RStudio session, go to File >
New Project > New Directory and then select “R package”. In the prompted window, you can decide where
to place your new package folder and, crucially, a name for your package. For tips on naming and many
other useful guidelines, please see Hadley Wickham’s awesome R packages book (freely available HERE).
Also, you can tick the box “create a git repository” for version control (see the section Version Control using
git, below). Creating the package this way will automatically create a DESCRIPTION and a NAMESPACE
file, and R/ and a man/ folder, and an .Rproj file. You can then create a data-raw/ and vignettes/ folder
manually. All information on how to create and populate an R package can be found in Wickham’s book.
Below are some quick tips on how to fill and organized the files and folders in your package. By following
the tips below you will have a package structure. Making it into a working package will take very few extra
steps.
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DESCRIPTION & NAMESPACE

@] hello.R @] nana.R @7 silence.R #+] DESCRIPTION =

Q
Package: packsample
Type: Package
Title: This package is just an example of how a package looks like.
Version: 0.1.0
Author@R: as.person(
c("Seba De Bona <sebastiano.debona@temple.edu> [aut, crel",
"Jason Gleditsch <jason.gleditsch@temple.edu> [aut]")

O NOU D WN P

9 Description: This package showcases the features of an R package. Ideally, in a real package,

10 the description would explain a little more in detail what was teased by the Title above.

11 In 3-4 sentences, it should explain the purpose of the project and the approaches/analyses

12 used here (e.g. studying population distribution using statistical modelling of long-term data).
13 License: MIT

14 Encoding: UTF-8

15 LazyData: true

16 Imports:

17 here,

18 knitr,

19 lubridate,
20 magrittr,
21 rmarkdown
22 roxygen2,
23 tidyverse

24 RoxygenNote: 7.1.0

The DESCRIPTION file is made of headers that define different fields. As soon as you create a package, you
should update this file. Make sure you fill the Title field (one sentence to explain what the project/package
does), the Description field (a few sentences to expand upon the title) and the Author@R field (with your
name and the names of your collaborators; “aut” and “cre” defines the roles as Authors and Creator of
the package). A key component of the file is the list of Imports, which details all CRAN packages your
project (and therefore your R package) depends on. It’s good to keep this up to date anytime you add new
dependencies to your project.

As mentioned above, the NAMESPACE file will be automatically updated by Roxygen. Just type into it #
Generated by roxygen2: do not edit by hand and save the file.

R/

This folder contains your custom functions, stored as individual .R scripts. Below is an example of (too) few
functions.

data-raw < P @ hello.R fa)
DESCRIPTION o @ nana.R )
man < P @ silence.R fa)
NAMESPACE o)

R packsample.Rproj o
vignettes o b

Each function as the same structure: a header defining its documentation (where each line starts with
#'), and a body containing the code that defines the function (as below). The first line of the header is
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translated into a short title of the function. The text that follows, separated by an empty line, describes
more in detail what the function does. The different headers starting with the at (@) symbol represents parts
of the documentation: @params defines the arguments of the function; @return the output of the function;
Q@examples some code to be used to understand how the function operates, etc. Finally, the @export is
necessary to ensure the function’s documentation is written out.

@' hello.R @) nana.R @) silence.R #'| DESCRIPTION || NAMESPACE

G| o SourceonSave @ QO - ¢ -»
#'Evaluate if a vector is empty

#

#'\code{not_all_na} takes a vector and checks whether at least one element
#' is not an \code{NA}. This is particularly useful when selecting non_empty
#' columns of a data frame or tibble.

#

#'@export

#

#'@aram x A vector to be evaluated.

10 #'@return A logical value (\code{TRUE} or \code{FALSE}) that answers the question
11 #' "is any element of the vector not an NA.

12 #'@examples

13 #'x1 <- c(0,1,NA,5)

14 #'not_all_na(x1)

15 #'x2 <- rep(NA, 5)

16 #'not_all_na(x2)

17

18

19 - nana <- function(x){

20 any(!is.na(x)ﬂ

21 %

22

Woo~NOYU A WN =

vignettes/

The bulk of a typical CRAN package (like dplyr or lme4) is made by functions and their documentation.
This is due to the fact that most published packages provide a toolkit for R users to wrangle data, run
analyses, or visualize data and results. In the case of a private R package for a project, like the one we are
describing here, the bulk of the package will be in the form of rmarkdown scripts to tidy data, run analyses,
and show the results with pretty plots. The wvignettes/ folder should contain all scripts (in Rmarkdown
format) describing and running the analyses. The scripts should be named using the following convention:

< Number > _ < Short informative name > .rmd

starting with a consecutive numbering, followed by a descriptive brief name (separated by underscore (i.e
" ") and without spaces).

data-raw < » @ 010_Tidying_data.Rmd [aY
DESCRIPTION o @ 020_Running_analyses.Rmd o
man < » @ 030_Plotting_results.Rmd o
NAMESPACE o

R packsample.Rproj fa
R [l 2

Bl vignettes @ »
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Numbering the scripts in chronological (and logical) order ensures anyone can access your scripts and know
where to start and how to proceed. Moreover, it ensures the scripts are run in the correct order when they are
automatically run by pkgdown (which we won’t go into details about here). Please, make sure you comment
each script thoroughly. At last half of your rmarkdown scripts should be in the form of text, with each chunk
of code well explained. Always ask yourself the question: “will someone accessing my package with no prior
knowledge of it understand what’s going on here?”. If the answer is “maybe”, add more comments. Another
good practice is to keep a consistent structure to each vignette. The script should be articulated in three
parts:

1. Aim and setup: where the purpose of the vignette is described, the required packages are attached,
and the necessary data and/or objects are loaded.
2. Main body: where the actually coding happens (and is thoroughly described).

3. Saving: where all the objects to be required by future vignettes are saved. All saved objects can be
stored inside the vignettes folder, or in additional folders “parallel” to the vignettes folder (such as
results/ and/or figures/).

sandbox/

This last folder (which you will have to create by hand) becomes extremely useful if you're transforming an
existing project into an R package. A good way to do this is to start by creating a new package and then
migrating your code, piece by piece, into your package. While you do that, you can copy all of your old
project scripts (whether they are in .R or .Rmd format) to your sandbox folder. Then proceed to transform
them into either functions (that will go into the R/ folder) or vignettes. As you transform your old code,
remove it from the sandbox. This folder is also useful to host code that has become obsolete or useless, but
might be recovered later, or scripts that have not made it into the mainstream of your project yet, but might
in the future.

Functions

UNDER CONSTRUCTION

Vignettes

UNDER CONSTRUCTION
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Website

UNDER CONSTRUCTION

Using Git

UNDER CONSTRUCTION

Version Control

Version controlling enables the archiving of every change made to the vignettes, functions, and metadata
of your package. You should always version control your code, and it’s very easy to version control your
package using git. Once git is installed, RStudio provides a very intuitive interface to it. Please refer to
Hadley Wickham’s R packages for a quick guide to using git in conjunction with an R package (in the Best
practices section at the end). A good set of tips and guidelines can also be found on the RStudio support
page HERE.

Pushing Package to github

UNDER CONSTRUCTION
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Further Resources

Borer, E.T., Seabloom, E.W., Jones, M.B. and Schildhauer, M., 2009. Some simple guidelines for effective
data management. The Bulletin of the Ecological Society of America, 90(2), pp.205-214. LINK

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L. and Teal, T.K., 2017. Good enough practices
in scientific computing. PLoS computational biology, 13(6). LINK

Ramapriyan, H. K., and P. J. T. Leonard. 2020. Data Product Development Guide (DPDG) for Data
Producers versionl. NASA Earth Science Data and Information System Standards Office, 9 July 2020.
LINK

British Ecological Society: Guide to Reproducible Code
Stanford: Data Best Practices

Useful Code

A web page with useful code can be found HERE
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https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/0012-9623-90.2.205
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510
https://doi.org/10.5067/DOC/ESO/RFC-041VERSION1
https://www.britishecologicalsociety.org/wp-content/uploads/2017/12/guide-to-reproducible-code.pdf
https://library.stanford.edu/research/data-management-services/data-best-practices
articles/200_useful_code.html
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